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1 Aims of the project 

It is a common scientific approach to investigate a physical object with multiple, complementary 

experimental methods. In this project we are focusing on certain classes of biomaterials which are 

characterized using laboratory x-ray computed tomography (labCT), synchrotron radiation micro-

computed tomography (SRµCT), magnetic resonance imaging (MRI), small angle x-ray scattering 

(SAXS) and histology. Experimental imaging data consequently comprises varying spatiotemporal 

resolution, dimensionality and modality-specific appearance, which is a very common problem 

encountered in many data-driven scientific fields. Analyzing each of the datasets and extracting relevant 

information individually, such as object segmentations or noise reduction, is already challenging, due to 

the complexity and large scale of the acquired data. Combining the output of several separately 

processed datasets, e.g. images of different modalities or segmentations and image enhancement 

results, becomes even more difficult and error-prone due to the lack of analytically determinable 

transformations that would restore the relation of partially overlapping object characterizations.  

Within this project, we first aim to address individually the most important tasks of image analysis 

including registration, segmentation/classification, and artifact or noise reduction using deep learning 

(DL) approaches for the specific biomedical task of bone implant characterization. Second, we will 

devise new multi-task deep learning methods that are able to integrally combine different complementary 

tasks and transfer the knowledge across analysis tasks. Therefore, several joint models for simultaneous 

registration and segmentation or image enhancement with segmentation priors can be realized. Third, 

we aim to identify common feature representations that are learned within generic structures of deep 

networks for various image analysis tasks, such as shape and appearance priors. By explicitly 

decoupling the task-specific network parts, we aim to find a unified data-driven approach that will enable 

its application to a much broader scope of domains, modalities, artifacts, resolutions, etc. Once a generic 

network architecture is developed with the help of domain experts, the goal is that further expert 

knowledge for problems in similar domains is not required anymore. Such problems are very common in 

Life Sciences (and other fields) ranging from analyses of anatomical changes over time in longitudinal 

brain MRI studies to evaluations of the performance of biodegradable implants in animal studies or 

humans to multimodal multiresolution integrative macromolecular structural biology experiments. 

2 Scientific concept 

The specific problems of registration, segmentation and artifact reduction or image enhancement will be 

first addressed individually using deep learning and then using multitask-learning approaches in a 

combined fashion at various levels and stages with a recurrent or iterative scheme. This will be 

demonstrated exemplarily on research on biodegradable implants since a plethora of multimodal data 

from multiple methods and devices at various resolutions is already available or currently collected by 

HZG and Syntellix (see Figure 1 and Chapter 4). 

2.1 Scientific objectives 

The aim of this project is to develop new methods for deep learning in biomedical imaging that leverage 

large datasets acquired with different modalities and by employing multiple complementary supervised 

tasks (reconstruction, segmentation, and registration) within a single network to improve the learned 

image understanding. In contrast to the vast majority of currently employed approaches that train a 

specialized deep learning model for each modality and each analysis task separately, we aim to 

disentangle the input data into a representation of its underlying semantic components (e.g. shape, 

object parts) and the given modality and scanner specific appearance. These powerful priors on image 

shape and appearance will be subsequently used to substantially improve the accuracy of individual 

analysis tasks e.g. the iterative reconstruction of tomographic images, the segmentation of challenging 

bone implant data, and the multimodal registration of MRI, labCT, SRµCT and histology. 

In the following, the principal scientific research questions will be presented in detail. 
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2.1.1 Scientific background of the data collected 

Permanent implants made of Titanium (Ti) or its alloys are the gold standard in most orthopedic and 

traumatological applications. However, in the case of children still growing or on patient’s demand a 

follow-up surgical intervention is required to remove the implant which is an additional health risk and 

cost factor (costs for explantation without complications in 2010 in Germany: 281 M€). Moreover, 

detrimental effects can be caused by stress shielding, wear debris or allergic reactions. To avoid such 

complications biodegradable implants are clearly preferred [1]. A promising implant material is 

Magnesium (Mg) due its biocompatibility (Mg is an essential element required by the human body), 

mechanical stability (Mg implants and bone have similar Young’s modulus), and degradation properties 

(Mg degrades under physiological conditions into products well tolerated by the human body). However, 

a fast and uncontrolled corrosion results in a strong release of hydrogen and ions and severe pH 

changes which can cause a loss of mechanical stability of the implant and undesirable biological 

reactions [2]. Using alloying elements the degradation and mechanical properties of the implant can be 

tailored such that the bone defect is stabilized during healing and implant degradation. These are highly 

complex processes in the living system and sufficient in vivo data is missing [3]. Therefore, the division 

Metallic Biomaterials at HZG is conducting extensive research to gain a most comprehensive 

characterization of the bone-implant interface. In order to establish Mg as implant material, the following 

questions will be addressed: 

● What are the underlying mechanisms of the in vivo degradation of implants in bone? 

● How does the implant degradation influence the encapsulation of the implant by bone 

(osseointegration)? 

● How do different implant materials stimulate bone formation at the bone-implant interface (bone 

remodeling)?  

● How is stress dissipated at the interface and what are the failure mechanisms under mechanical 

load? 

Outcome: An improved understanding of the degradation, osseointegration, bone remodeling and failure 

mechanisms will enable the design of implants that are optimized for medical applications. 

Addressed funding priorities: A plethora of multimodal data is currently collected by HZG in order to 

characterize the bone-implant interface. Since data processing and analysis is challenging due to 

the amount and heterogeneity of the collected data sets, advanced multi-task and multimodal 

analysis tools will be developed within this project. 

 

Figure 1: Schematic overview of imaging modalities, data sets and tasks to be performed.  
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2.1.2 Image enhancement 

Our central hypothesis is that a complementary combination of deep learning and mathematical 

modelling will lead to improvements in iterative CT reconstruction and multimodal artifact reduction. The 

following questions will be investigated in this project:  

● How much can the image quality be improved by post-processing with convolutional neural 

networks (CNNs) and is it possible to transfer already learned parameters to different image 

modalities? 

● Can a learned adversarial loss function penalize artifacts in CTs during the reconstruction? 

● Does the joint integration of an iterative reconstruction algorithm with (adversarial) CNNs offer 

further advantages? 

● Does learning a sparse system matrix provide further runtime and robustness benefits? 

● Are learned and non-local priors advantageous for weighted image regularization? 

● How can the transfer of the learned methodology, especially the multitask approach, to phantom 

and human CT data be achieved? 

Outcome: It is to be expected that new insights will be gained regarding the integration of different 

modalities to achieve an improved image quality. In particular, the combination of deep learning 

and mathematical modelling will lead to better image quality in terms of recognition of anatomical 

details, the amount of artifacts and basic prerequisite for further processing. 

Addressed funding priorities: The project addresses the application of innovative and experimental 

concepts for the integration and combination of various image data (e.g. learned prior based on 

different imaging modalities) based on deep learning techniques combined with conventional 

analytical and numerical methods. 

2.1.3 Segmentation  

We propose that the use of multiple datasets of the same sample collected with different experimental 

methods yielding images at varying resolutions, with varying level of detail and different appearance (e.g. 

histology) improve the accuracy of the segmentation for various image modalities. Following questions 

will be addressed: 

● Investigation of segmentation-accuracy improvement due to the simultaneous usage of 

multimodal data for segmentation. 

● Possibilities of cross-modality transfer learning. Do the segmentations of the individual data types 

benefit from networks trained on multimodal data? As a result, imaging using lower resolution 

and lower dose experiments can provide results comparable to those obtained today only with 

SRµCT, for example, making the expensive synchrotron experiments obsolete.  

● Is it possible to learn rotation and scale invariant or covariant filter kernels by using deformable 

convolution training that enables an adaptive geometric transformation of the spatial filter layouts. 

Outcome: Segmentations for different biomedical data types used as priors for registration and 

enhancement, and subsequently a segmentation tool capable of using multiple data types in 

parallel with emphasis on precision and exploiting the heterogeneity of different experimental 

data. The aim is to develop a model that can use the accumulated knowledge from all modalities 

to achieve a segmentation of the individual data types which is superior to the one using a single 

data type only. 

Addressed funding priorities: We address the influence of weakly annotated heterogeneous data (i.e. 

incomplete, insufficient and inadequate manual segmentations from different sources and 

modalities, which further depend on the experience of the domain expert) with respect to the 

reliability and quantitative interpretability of a segmentation tool. 
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2.1.4 Registration 

We will develop novel deep learning based algorithms for accurate and robust multimodal image 

registration. Instead of directly learning a very complex network that directly regresses a (non-linear) 

transformation given two inputs, we aim to decouple the feature learning part of the network and 

separate it from a mathematically motivated geometric alignment part to answer the following research 

questions: 

● Is it possible to train a deep multimodal registration network from much fewer labelled training 

data by explicitly using iterative geometric transformation models? 

● Can the robustness and accuracy be further improved by learning a prior model that captures 

anatomical information independent of modality to provide a semantic guidance for the alignment 

task? 

● Will transfer and/or multi-task learning further assist the convergence of image registration by 

initializing network weights based on segmentation and image reconstruction models? 

● Is it possible to model the iterative fitting of spatial transformations in a differentiable manner to 

train a multi-step deep alignment model in an end-to-end fashion and thereby enable a robust 

coarse-to-fine registration? 

Outcome: We expect to develop more robust deep registration models that have fewer trainable weights 

and can be trained with weak labels and/or intrinsic information from large datasets. We will 

reduce the computational burden of large-scale registration tasks by designing efficient multi-

stage feed forward transformer networks. The software modules will be beneficial in other work 

tasks by improving transfer learning through multimodal fusion of information. 

Addressed funding priorities: The work will incorporate existing domain knowledge (iterative 

mathematically modelled geometric alignment) into the deep models. Our multimodal alignment 

will connect different imaging modalities to capture the complex interactions in this data and 

enable transfer learning for other analysis tasks.  

2.1.5 Multi-task learning 

We will design a concept for multi-task learning targeted at multiscale and multimodal biomedical data 

that comprises of a foundational prior network and specialized task- and modality-specific network parts 

that are jointly trained. The following research questions will be addressed in this work: 

● How can we best design a common foundational network architecture that captures normal 

anatomical priors and their variations of the studied objects with high robustness? 

● Will this generalistic network enable us to effectively study abnormalities (pathologies, temporal 

changes of material composition, etc.) by training several task specific sub-networks? 

● Which recently developed techniques for multi-task learning beyond simple parameter-sharing 

such as cross-stitch networks [4], guidance through attention-gate networks [5], etc. are best 

suited for multimodal biomedical image analysis? How can these be developed further and is it 

potentially possible to automatically search the best combinations of those [6]?  

Outcome: Development of appropriate methods pre-trained networks for deep multi-task learning 

adapted for biomedical data challenges which capture priors of considered anatomical sites and 

modalities. Evaluation of the ability to transfer knowledge across multiple biomedical image 

analysis tasks.  

Addressed funding priorities: Increased interpretability and robustness of models by learning explicit 

prior models of shape. Reducing the reliance on training models from scratch with specific expert 

domain knowledge by adapting common pre-trained architectures that transfer information and 

experience. 
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2.1.6 Unified framework 

We propose to implement the methods and tools developed for image enhancement, segmentation and 

registration in a unified framework to address these tasks simultaneously across domains and modalities 

using multi-task learning strategies. The following questions will be addressed: 

● What are the most important generic building blocks of each task considered and how can they 

be effectively shared within a unified framework? 

● How can a simultaneous multi-task data analysis potentially help to improve the domain 

adaptation problem and increase the accuracy and robustness of individual tasks? 

● Is it possible to improve the generalization of image analysis models through scale-adaptive and 

modality-invariant filter kernels to enable a more effective transfer learning?  

● How can additional tasks be implemented in a unified framework and trained with little expert 

supervision to support an easier adaptation of complex deep networks in life sciences? 

Outcome: A unified framework for multi-task analysis will foster synergies and is expected to be highly 

beneficial for a broad user community because the tasks considered are relevant to most users 

working with imaging data. 

Addressed funding priorities: For the implementation of the framework free and open-source machine 

learning libraries will be used such as TensorFlow or PyTorch. The performance of the 

framework will be evaluated across domains and modalities. 

2.2 Methodological approach 

2.2.1 Imaging modalities and data analysis 

In order to elucidate the degradation behavior, osseointegration and failure mechanisms of 

biodegradable implants, HZG aims at most comprehensive characterization of the bone-implant interface 

using a multimodal, multiscale approach including labCT, SRµCT, SAXS, MRI and histology. Several 

different Mg alloys are considered as implant materials as well as Polyetheretherketone (PEEK) and 

Titanium (Ti) as reference materials. The data sets collected are thus prone to different artifacts 

depending on the implant material as well as the imaging modality e.g. low contrast of Mg alloys and 

PEEK in labCT or low contrast and metal artifacts of Ti and Mg alloys in MRI and labCT (see Figure 2). 

Following data sets will be provided by the consortium within this project: 

● Ex vivo data of implants (Mg alloys, PEEK, Ti) in rat femurs including 3D volumes from SRµCT 

and 2D slices from SAXS, histology. SRµCT is available for critically-point dried samples, fresh 

samples from biomechanical tests and fresh samples originating from previous in vivo labCT 

studies. 

● In vivo scans of implants (Mg alloys, PEEK, Ti) in rat femurs using low-resolution MRI and labCT. 

Both modalities are prone to artifacts (metal, motion, low contrast, etc.) artifacts. 

● At the end of the in vivo studies, ex vivo MRI and labCT will be acquired with scan parameters 

optimized for image quality as neither radiation dose nor movement artifact will be of concern. In 

addition, SRµCT will be acquired with high spatial resolution and contrast and without beam 

hardening artifacts due to monochromatic synchrotron radiation. 

● Clinical MRI of biodegradable implants in patients provided by Syntellix AG. 

● Clinical data from other areas such as patients with hip or knee implants, orthopedic screws and 

stents is provided by University Medical Center Schleswig-Holstein (UKSH). 

Figure 1 depicts a schematic overview of imaging modalities, available data sets and tasks to be 

performed. Figure 2 shows images acquired from different modalities and the registration of SRµCT, 

SAXS and histology. 

 

 

https://www.uksh.de/
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Figure 2: Imaging modalities and multimodal registration: (a,b) Animal data from in vivo labCT of a permanent Ti 

(a) and a biodegradable Mg (b) implant in a rat femur. Note that metal artifacts are minor in (a) due to the 

orientation of the depicted slice and the used window and level. (c,d) Clinical MRI of a human forefoot three years 

after a hallux valgus correction (osteotomy) using a Titanium (c) and Mg (d) implant, respectively. (e-j) Ex vivo 

animal data from SRµCT (e,f), histology (g,h) and SAXS (i,j) of the same Ti-implant (e,g,i) and Mg-implant (f,h,j), 

respectively. The red box in (e-h) indicates where SAXS measurements where performed. (e-h) Registration of 

multimodal data from SRµCT, histology and SAXS. A landmark-based method with rigid transformation was used 

to register the 2D slice from histology and SAXS with the 3D volume from SRµCT. Note that the histological 

sections in (g) are superimposed by images from optical microscopy. 

2.2.2 Image enhancement 

A partial application of the project is to achieve significant methodological progress in the field of CT 

image reconstruction taking various approaches for artifact correction into account. By combining the 

recently developed iterative reconstruction techniques augmented likelihood image reconstruction (ALIR) 

and current deep learning techniques, the state of the art for inverse problems in medical imaging will be 

improved, which is expected to have far-reaching implications for the whole field [7]. The focus of our 

planned work lies in a detailed investigation of different points of contact and mutual reinforcement 

between data-driven, monitored learning procedures, which independently grasp semantic correlations 

with the help of large data sets, and analytical procedures, which can all combined yield specific 

geometric and anatomical prior knowledge. 

In the planned period of three years, these questions will be answered systematically and evaluated 

quantitatively for various challenging reconstruction problems. UzL is highly competent in generating 

training and validation data with realistic (software) phantoms and has access to comprehensive clinical 

radiological image data of human individuals. Furthermore, image data of rats from SRµCT and labCT 

can be used to compare Mg-based, PEEK-, and Ti-implants regarding the severity of artifacts and image 
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enhancement ability. On the one hand, the focus of the research will be directly on improving image 

quality and avoiding artifacts and, on the other hand, on the development of new methods which are 

suitable for further applications in inverse problems in medical imaging and image processing. Based on 

the previously presented ALIR algorithm, new methods for the reduction of various artifact types will be 

developed [7]. In particular, we will investigate how deep learning techniques can be used to generate a 

prior, suppress artifacts and directly reconstruct images. The base of the sub-project is a combination of 

robust numerical procedures with data-driven learning algorithms, whereby the complementary 

approaches mutually support each other. Convolutional networks can usually learn better filters for edge 

preservation through extensive training and reliably distinguish between disturbed and artifact-free 

images through discriminative loss functions. It is therefore of great interest to examine whether iterative 

reconstruction algorithms in combination with feed-forward networks will provide further advantages and 

improvements. 

The ALIR algorithm is an iterative reconstruction approach in which projection values that are associated 

with metal are replaced in each iteration. As a new approach, the replacement of projection values will 

be adapted to various types of artifacts, e.g. motion artifacts, noise reduction or truncation artifacts. In 

each iteration, newly calculated projection values will be combined with the original measurement. For 

the exemplary application of noise artifacts, intermediate results of the iterative reconstruction can be 

filtered in order to reduce noise, or CNN-based images in combination with other modalities can be 

created. The basic idea here is that artificially generated projections contribute to noise reduction in the 

image while original measurement data ensure that specific anatomical details are correctly 

reconstructed. A projection replacement step based on a direct deep learning reconstruction and CNN-

based filter for artifact reduction will be investigated in detail. 

Furthermore, images generated by a CNN offer great potential for the application of a prior image based 

regularization. Images can be derived either from interim results of the reconstruction, different image 

modalities such as SRµCT and MRI, or a combination of the two. The use of generative adversarial 

networks will be investigated. Once a prior image has been defined, it is to be integrated into the 

reconstruction with the help of a regularization term. The aim is to use information about the anatomy of 

the object of investigation from the prior to reduce artifacts in the reconstructed image. An important 

aspect is not to use the anatomy from the prior to perform a pixel-to-pixel comparison and penalize 

intensity differences. This would result in not mapping the correct anatomy of the patient, but only a copy 

of the prior image. To avoid this effect, a non-local regularization term is used, which is presented for a 

software phantom in the preliminary work [8]. Such a procedure is particularly useful when using images 

generated by a CNN as the prior no longer has to fulfill the property that it depicts anatomically correct 

and positionally true structures, but should fulfill the condition with the help of a learned discriminative 

loss function that the depicted structures are related to the measured raw data and that the generated 

image is artifact-free. 

In the specific case of metal artifacts, the proposed regularization will be extended by a local weighting 

approach. The magnitude and location of metal artifacts is strongly dependent on the shape of the metal 

object. Using an initially reconstructed image, which is either the result of a direct deep learning 

reconstruction or a CNN filtered reconstruction, one can calculate an opening angle to the metal object 

for each pixel in the image which indicates the magnitude of an artifact at a specific position. 

Furthermore, this angle can be used for a weighting scheme of the regularization. 

A lot of the proposed methods are specific for CT imaging, especially deep learning based approaches 

that are developed for post-processing of either reconstructed images or interim results. Thus, these 

methods will be transferred for an application on other imaging modalities such as MRI. Image 

enhancement (e.g. spatial resolution, artifact reduction) of in vivo MRI/CT data from rats will be achieved 

by cross-domain learning from high-quality SRµCT images and the quality of longitudinal clinical MRI 

data will be improved by cross-domain learning from ex vivo scans.  
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2.2.3 Segmentation 

For the detailed quantitative analysis of the degradation process of biomaterials, very precise semantic 

segmentation of several hundreds of collected 3D tomographic datasets is crucial. The scope of this task 

goes beyond the usual requirements for semantic segmentation where often the localization and rough 

definition of the boundaries of a region of interest is sufficient. 

X-ray tomographic volumetric data of biomaterials are particularly challenging. The precise boundaries 

between different materials and tissues of interest are – even for trained experts – hardly to distinguish 

and difficult to interpret. This often induces small errors in state-of-the-art segmentation methods 

including small false positive patches, imprecise boundaries of objects, etc., which are irrelevant in many 

applications, but significantly influence the results of scientific quantitative biomedical analysis of 3D 

tomographic volumes where e.g. the evolution of contact areas over time are studied. 

The large amount of data – a single SRµCT data set typically has about 15003 voxels – has made semi-

automatic extensions of manually segmented slice, e.g. by interpolation with watershed algorithms, 

indispensable. However, such a procedure unavoidably propagates and increases errors in the initial 

segmentation. Particularly iterative procedures lead to a poorly reproducible segmentation impairing the 

quality of the expert’s manual segmentation. Consequently, the annotations for deep learning based 

segmentations of tomographic images are often inaccurate, which bears challenges for the training and 

evaluation of deep CNNs. In particular, for the evaluation of the accuracy, stability and the comparability 

of models additional measurements need to be developed. Ultimately, removing the necessity of semi-

automatic and error-prone procedures is one of the goals of the multi-task deep learning pipeline.  

For the development and training of deep learning methods for precise and accurate automatic semantic 

segmentation and their quantitative analysis, we will study the robustness of deep learning architectures 

towards inaccuracies within manually annotated training data in order to develop novel means of 

evaluation and comparison of trained models, and to exploit and integrate information from several 

modalities, i.e. different experimental measurements of the same sample. In particular, for the latter 

novel network architectures using multiple input sources will be investigated. 

2.2.4 Registration 

Co-localization and image registration play an important role in analyzing data acquired at different time 

points or with different modalities. Multimodal registration, i.e. the alignment of images from different 

scanner types, is in particular challenging because there is no direct way to compare the appearance to 

optimize a nonlinear transformation. In addition, the process is sensitive to large initial misalignments 

and can be time-consuming, especially for large and high-resolution images.  

Recently, several deep learning methods have been proposed that jointly learn suitable image features 

and a nonlinear regression function to directly predict a displacement field given two images. They aim to 

replace the commonly used iterative registration process with learned convolution filters that are 

optimized using spatial transformer networks (differentiable image sampling) with respect to a 

supervisory task, which can be either based on ground truth correspondences, weaker structural label 

information or intrinsic mathematically derived metrics. Currently, most approaches are not well suited 

for large alignment [9] and do not offer a direct possibility to include network parts (architectural and pre-

trained weights) from complementary tasks (e.g. segmentation).  

In this project, we aim to first develop deep learning based registration approaches that enable semantic 

guidance from segmentation networks and landmark localization tasks and thereby learn modality-

invariant and thus better comparable representations. For both auxiliary tasks, expert supervision can be 

more easily generated than (dense) correspondences. Furthermore, by using guidance from anatomical 

structures a canonical coordinate frame (e.g. defined by deep multimodal auto-encoders [10]) will be 

learned that facilitates the registration of scans acquired with large initial misalignments, e.g. due to very 

different fields of view (3D synchrotron tomography to 2D histological slices). Second, we will develop 

new deep learning architectures that separate the task of feature learning from the spatial alignment as 
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initially outlined in [11]). This will enable the incorporation and transfer of knowledge from trained 

networks for additional tasks, e.g. segmentation and image reconstruction or enhancement. 

2.2.5 Multi-task Learning 

The focus of our research project is the integration of multiple complementary tasks for biomedical image 

analysis into a common network architecture, which leverages the joint use of underlying concepts such 

as anatomy and shape while decoupling the differences in input appearance and output domain. Recent 

work in computer vision and machine learning has already started to develop concepts that separate 

stylistic elements of images from its content (or shape) [12]. In the context of multimodal and multi-task 

learning, the joint analysis of sound and video has led to highly accurate classifiers with almost no expert 

supervision [13]. In computer vision it was shown that a variety of inverse image enhancement tasks can 

be solved in a superior manner using a multitask network [14]. 

 

 

Figure 3: Proposed multi-task network model that benefits from shared priors common for several analyses and 

enables the disentanglement of task-specific differences for biomedical research objectives. Weights trained for the 

generalistic prior network are learned jointly from all complementary tasks to increase their ability to be transferred 

to new domains. The modelling of temporal changes, abnormalities or artifacts becomes easier and improves the 

image analysis. 

Common in nearly all image analysis tasks is an implicit understanding of a deep network of a 

meaningful prior of the shape and content within all given datasets (e.g. from different modalities, but the 

same anatomical site). In this work package, we aim to develop a generalistic network architecture for 

biomedical images that learns a common shape and content prior based on multiple complementary 

tasks. In our prior work, an anatomically constrained network using a shape prior was successfully 

employed to improve motion artifact removal, image segmentation and super-resolution reconstruction 

[15]. Here, we aim to extend this concept to multimodal input as well as to images reconstructed with 

different levels of artifact correction (within inverse reconstruction tasks). On the other hand, we will 

implement several subtasks that will allow us to use complementary supervisory labels for image 

segmentation, registration and image enhancement. In general, we can observe that many work 

packages in this project will share similar CNN architectures (multiscale U-Net) or iterative refinement of 

the image analysis steps. These processing tasks are directly suitable for adapting state-of-the-art multi-

task learning strategies, including cross-stitching networks, deep relationship networks or uncertainty-

driven knowledge share, which are currently only employed in computer vision as well as attention 

mechanisms. This will enable us to jointly learn relevant image priors (of normal shapes) and disentangle 

them from modality specific appearance, artifacts and temporal changes of tissue and material 

composition to improve the accuracy and robustness of each individual task (see Figure 3). 
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2.2.6 Unified framework 

The main intent of the unified framework is to enable scientist and users from the imaging community a 

quick and efficient application of deep learning methods for image processing and analysis in order to 

focus on scientific problems instead of implementation issues. While in the first step the focus is on 

image enhancement, segmentation and registration for specific problems, the idea of the framework is, 

to provide a modality and domain independent implementation that allows an easy integration of 

additional tasks and domain expert knowledge. Particular focus is on multi-task approaches in order to 

solve multiple processing steps simultaneously and/or in an iterative, alternating fashion. Therefore, we 

aim at a high-level formulation of the applied deep learning approaches such that method and 

application specific code has to written only once or can easily be adapted for other domains and 

modalities. Common python-based machine learning libraries such as TensorFlow or PyTorch will be 

used to facilitate fast prototyping and code development. 

3 Financial framework; reasons for the necessity of the BMBF-funding  

In total the consortiums applies for 1,170,157 EUR over the funding period of 3 years. Detailed 

justification of the funding requested is given in the accompanying data sheet. A request for funding of 

this project has not been submitted to any other addressee. In the case we submit such a request, we 

will inform the Federal Ministry of Education and Research immediately. There is no funding possible for 

our entirely Germany-based consortium by the European Commission such as by the Horizon 2020 

program for Research and Innovation. 

HZG: The division Metallic Biomaterials of the Institute of Materials Research belongs to the Helmholtz 

Program Advanced Engineering Materials within the Research Field Key Technologies. The 

corresponding funding is foreseen for materials development and biological assessment. The imaging 

activities of HZG relevant to this proposal are funded by two BMBF projects (05K16CGA & 05K16CGB). 

Available resources do not cover development and upgrade of currently available segmentation, 

registration and artifact reduction techniques or software. Therefore, this project can only be realized 

with external funds. For this project, HZG cannot apply at other national sources (e.g. DFG) because 

HZG as a Helmholtz Center is not eligible for funding of 'Einzelantrag'. The application at European 

funding agencies is not possible because the consortium is too small. 

UzL: Very complex research projects which are carried out at the UzL cannot usually be realized with its 

own budget. An ambitious goal, as it is described in the present project, has risks in its implementation, 

which are reflected in particular in the resolution and artifact reduction to be achieved. The considerable 

research aspect will be taken over by a PhD student who will work full-time on the project. The resulting 

financial risk cannot be covered solely by IMT and can only be compensated by funding. Without the 

requested grant, processing would not be justifiable, as it would be accompanied by a significant 

reduction in resources. 

DESY: The IT division at DESY, as well as several other scientific groups at DESY, are employing deep 

learning approaches in various scientific areas (see https://indico.desy.de/indico/event/21640/ for an 

overview of activities), and substantial efforts go into provisioning of high performance GPU compute 

environments. The ambitious goals of this project both in segmentation and provisioning of sustainable 

services cannot be covered by available resources or currently running third-party projects. The 

application at European funding agencies is not possible, since none of the open or published calls align 

with the methodologies and goals of the proposed project. 

4 Quality and relevance of solid data basis for use in the project in development and 

validation and the accessibility at project start 

In vivo MRI and µCT data of the same implants is currently collected by HZG in cooperation with the 

Molecular Imaging North Competence Center (MOIN CC) (BMBF project MgBone 05K16CGB). 60 

animals are imaged every 30 days over a period of 120 and 150 days, respectively. SRµCT data of non-

https://indico.desy.de/indico/event/21640/
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degradable and degradable bone implants at various healing stages is available in large quantities from 

research projects carried out by HZG. Tomograms from about 120 critical point dried samples and 72 

fresh samples of in situ biomechanical tests on implants are available from the BMBF project 

Synchroload (05K16CGA). 3D volumes are segmented manually with currently about 20 segmentations 

with high accuracy of large-scale tomographic volumes (15003 voxels) available. 53 segmented 

tomograms are available from the MSCA ETN MagnIM (289163). 77 SAXS regions from 33 samples 

have been registered with histology and SRµCT. Two PhD student of the Marie Skłodowska-Curie Action 

(MSCA) European Training Network (ETN) MgSafe will continue the work on the segmentation of 

tomograms and registration of SRµCT, SAXS and histology. 20 data sets from nano X-ray diffraction 

experiments are available which allow estimating phase compositions. Further information is available 

for some samples on the chemical composition from EDX and XRF and on the bone mineralization in 3D 

from SAXS tensor tomography. The data is stored on the DESY computer center and can be easily 

accessed via file transfer protocol. All project collaborators will be added to the pool of users for the 

respective data. HZG is currently developing and implementing a database containing (or linking to) 

experimental and simulation data from various modalities and sources. The database will store data in a 

way that allows easy access from different simulation and modelling tools as well as data processing and 

analysis tools. The database will contain data from MRI, SRµCT, labCT, optical imaging, SEM, TEM and 

other sources as well as materials data including microstructure and mechanical properties, processing 

data from different fabrications steps, in vitro degradation data, and biological and medical data.  

Due to their strict post market surveillance, Syntellix actively collects and analyses patient data resulting 

from treatments with their products. Within a Syntellix initiated post market clinical follow up study, 90 

patients undergo a scaphoid fracture treating surgery in which MAGNEZIX®-based compression screws 

are implanted. As part of the follow-up procedure of this study, clinical MRI data is achieved 6 weeks and 

3, 6 and 12 months post-surgery. MRI data for further analysis will be provided in the clinically format. 

In cooperation with the Department of Radiotherapy and the Clinic for Radiology and Nuclear Medicine 

at the University Medical Center S-H (UKSH) / Campus Lübeck, CT data is collected from patients with 

various metal implants. The constantly increasing number of data sets is anonymized and available as 

raw data and reconstructed data. Furthermore, it is possible to acquire specific data sets using multiple 

clinical CT devices (Biograph mCT and Somatom Definition AS, Siemens AG, Erlangen, Germany). 

Access to the raw data of the CT device often poses a major barrier, as these are usually stored in 

encrypted form and can only be read with special software. The applicant has signed a Non-Disclosure 

Agreement (NDA) with Siemens Healthcare GmbH since 2006. This refers in particular to readout 

routines provided by Siemens which allow accessing the raw data of the various Siemens CTs. 

In the human medical domain, there has recently been a substantial growth in publicly available imaging 

datasets (CT, MRI, histology and more) that is provided with expert annotations. Exemplary are the 

medical decathlon datasets (http://medicaldecathlon.com) that contain 1746 usually high-resolution 3D 

scans acquired with CT or MRI of human anatomy and pathology spread across ten anatomical sights. 

Each scan is manually labelled by experts and may serve as basis for training deep networks for medical 

image that capture anatomical priors and ease the learning of task specific models. Furthermore the 

cancer imaging archive (https://www.cancerimagingarchive.net) has made available hundreds of medical 

scans with expert annotations and/or medical diagnoses and the German National Cohort (NaKo) 

currently acquires over 20,000 MRI scans of the general population with additional demographic and 

epidemiological parameters for which UzL has submitted a data access grant together with MEVIS 

Fraunhofer Bremen. 

5 Relevance of the method / algorithm / software tool in (further) development, 

description of its impact on specified life-science field of application.  

The specific tasks addressed within this project namely image enhancement, data segmentation and 

multimodal registration are common and often mandatory preprocessing steps for further analysis and 

interpretation of the acquired data in medicine, life science and other fields. In osteology e.g. CT imaging 

http://medicaldecathlon.com/
https://www.cancerimagingarchive.net/
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techniques are used to assess the bone density and architecture which requires prior segmentation in 

order to determine the bone mass density or the structure and texture of the trabecular network [16]. In 

clinical MRI and CT e.g. the presence of metallic implants causes severe artifacts which limit the 

diagnostic image evaluation and demand for image enhancement techniques to generate artifact-free 

images [17,18]. There is a high demand for such tools among users of synchrotron radiation facilities 

such as PETRA III across disciplines including life sciences. E.g. almost all users of the imaging end 

stations of P05 and P07 at PETRA III have to perform at least one, often more, of these tasks. 

Registration and segmentation of multimodal and/or longitudinal data sets are two of the major tasks in 

medical imaging and other fields which are typically affiliated with each other [19,20]. Each single task is 

very time-consuming and often requires weeks and months to fulfill. The processing is often impeded by 

imaging artifacts, low contrast and noise requiring further time-consuming data pre-processing. A multi-

task learning approach solving these tasks simultaneous is therefore of great general interest for a wide 

user community.  

6 Structure of the project, management and coordination  

The project is structured in seven scientific and one management work packages (WP). WP1 (lead: 

HZG) is dedicated to data pre-processing. WP2 (lead: UzL), WP3 (lead: DESY), WP4 (lead: HZG) 

implement (single-task) deep learning approaches for image enhancement, segmentation and 

registration, respectively. WP5 (lead: UzL) is dedicated to multi-task solutions combining WP2, WP3 and 

WP4. WP6 (lead: HZG) is dedicated to the development and implementation of a unified framework for 

multi-task learning. WP5 and WP6 require a close collaboration and a steady exchange of knowledge 

between partners. WP7 (lead: HZG) is concern management issues. 

HZG acts as interface between the partners in the consortium and is responsible for the coordination of 

the project and the monitoring of its progress. At project start, a kick-off meeting will be organized by 

HZG in order to coordinate tasks and discuss pathways of communication, data and knowledge 

exchange between partners. Each partner will participate in a monthly jour fix to discuss the progress of 

each WP. In quarterly virtual meetings the WPs will present their progress to the partner institutes. Every 

half year, the consortium meets in person to give project updates and to discuss adjustments to the work 

plan if needed. In accordance with the personal meeting, yearly workshops will be organized to present 

the algorithms developed and disseminate knowledge.  

7 State of science 

Deep learning methods for inverse problems 

Recently, the field of inverse problems and in particular CT reconstruction algorithms has benefited from 

the constantly evolving area of deep learning techniques. The use of CNNs has shown a general 

potential to reduce artifacts in the field of noise suppression and super-resolution of natural and medical 

images and more specifically in low-dose imaging [21,22,23]. However, the potential for improvement in 

artifact reduction appears to be even greater as the strong disruption affects the entire reconstructed 

image. For example, a prior image is particularly important to compensate for ill-posed inverse problems. 

In contrast to classical priors, which are mostly based on the simple assumption of piecewise constant 

image areas (sparsity in gradients or wavelet coefficients) and also permit implausible solutions, deep 

convolutional networks (DCNNs) can be used to learn significantly more precise assumptions from 

realistic images. 

First approaches for image restoration with neural networks were presented in [23], where an iterative 

nonlinear diffusion method with trainable activation functions in the form of a recurrent convolutional 

network was developed, which provided advantages for denoising as well as for the reconstruction of 

super-resolved images. In [24] this method was transferred to classical fully-convolutional NN 

architectures and simultaneously trained for a number of different (artificially added) noise levels with an 
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L1 norm. The noise suppression and enhancement of image resolution was particularly improved by 

learning with residual links. 

As of recently, a number of approaches have been presented which, in CT reconstruction, suppress the 

unavoidable noise with a few low-dose projections using learning methods (see [25,26,27]) and are 

mostly built with multiscale CNN and using residual connections. In [14,22,27] an iterative optimization is 

used and a fully connected auto-encoder is trained unsupervised for a thinly populated low-dimensional 

image description. Due to the high number of trainable weights [21] is limited to 2D. In [27], the iterative 

reconstruction algorithm for limited X-ray projections is represented by an unrolled recurrent network, 

which is a single iteration of the reconstruction as layers in CNN, but finally only results in a common 

multiscale U-Net architecture [28] with residual connection. While classical learning methods have 

already been successfully used for CT images with metal artifacts [29,30], we do not yet know of any 

approach using deep learning (e.g. CNNs) in combination with classical metal artifact reduction methods 

and different image modalities. Even though different approaches for a CT reconstruction in combination 

with deep learning methods have already been presented, these methods either focus on CNNs that try 

to project the solution onto a set of desired reconstruction images [31], an intelligent parameter tuning of 

the optimization [32], or a CNN-based regularization term [33]. Nonetheless, a direct deep learning 

based reconstruction algorithm still needs to be found. 

Segmentation 

The task of segmentation is typically defined as identifying the set of pixels or voxels which make up 

either the contour or the interior of the object(s) of interest. In Life Sciences and especially in synchrotron 

imaging with an abundance of different imaging techniques (conventional absorption contrast, phase 

contrast techniques (propagation-based, grating interferometry, Zernike, etc.), micro-/nano-tomography, 

full-field/scanning methods, etc.), segmentation is typically done manually or in a semi-automatic fashion 

since fully automatized methods often fail because of the heterogeneity and complexity of acquired data 

sets. Therefore, a trade-off between quality and quantity of a manual or semi-automatic segmentation is 

usually required due to the typically large of amount of data sets. In addition, the quality of a manual 

segmentation strongly depends on the domain expert knowledge as well as the experience of the person 

segmenting the data.  

Machine learning techniques (MLTs) perform automated segmentation by determining the optimal 

decision boundary in the high-dimensional space of discriminant features. The features extracted from 

images by human researchers are called handcrafted features. On the other hand, modern deep 

learning algorithms (DLAs) learn features that optimally represent the data for the problem at hand. 

Indeed, DLAs consist in models or networks composed of many layers that transform input data (e.g. 

images) to outputs (e.g. disease present/absent) while learning increasingly higher level features [34]. 

CNNs containing many layers that transform their input with convolution filters of a small extent are the 

most successful type of models for image analysis to date. Image segmentation can be performed by 

letting CNNs classify each pixel in the image individually. While this approach is computationally 

redundant, fully convolutional networks (fCNN) can be applied to an entire input image or volume in a 

much more efficient way and without any resolution penalty. The most well-known fCNN architectures is 

U-net [28] that is characterized by the combination of an equal amount of upsampling and downsampling 

layers and that provides a segmentation map directly in one forward step, and is therefore suitable for 

end-to-end learning of tissue segmentations and tissue boundary discrimination tasks. Moreover, a full 

3D segmentation can be achieved by feeding U-net with a series of 2D annotated slices from the same 

volume by combining U-nets trained on orthogonal sections of the same data or eventually by employing 

3D U-nets. In several other domains CNNs have been successfully used, e.g. to produce higher-quality, 

synthetic brain MRI to improve extraction of quantitative information from the acquired images [35], to 

provide automatic segmentation in MRI for knee cartilage [36] and proximal femur [37], and for nonlinear 

decomposition of CT images for metal artifact reduction [38]. Even though various deep learning 

architectures for semantic segmentation have been investigated, U-Nets are still the most widely used 

deep learning networks in biomedical image analysis [39]. The major challenge in the field of biomedical 
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image segmentation usually lies in the availability of a sufficient number of high-quality, well annotated 

training data. This is often addressed by enriching the training data with heavy augmentation. 

Registration with deep learning 

Compared to other fields relatively little research has yet been undertaken in deep learning based image 

registration [34] and most of this research has been published in the last two years. These methods 

mostly aim to learn a function in form of a CNN that predicts a spatial deformation which warps a so-

called moving image to a fixed image. Based on how networks are trained, one can categorize these 

approaches into fully-supervised [40], unsupervised [9,41] and weakly-supervised [42,43] methods. 

Supervised methods require dense ground-truth deformation fields for training [44]. These deformation 

fields have to be either generated by synthetic deformation models or produced by classic image 

registration methods, which limits their accuracy by the performance of existing algorithms or 

simulations. 

In contrast, unsupervised methods do not require any ground-truth data. The learning process is driven 

by image similarity measures or more general by evaluating the cost function of classic variational image 

registration methods [45]. An important milestone for the development of these methods was the 

introduction of the spatial transformer networks [46] for differentiable warping of moving images during 

training. Weakly-supervised methods also do not rely on ground-truth deformation fields but training is 

still supervised with prior information. The labels of the moving image are transformed by the 

deformation field and compared within the loss function with the fixed labels. All anatomical labels are 

only required during training. Combining weakly-supervised and unsupervised loss terms [45] further 

improves the alignment quality. 

Multi-task analysis / Unified framework 

While multi-task learning has attracted very much research in the computer vision field in recent years 

[47]. There are various parts of deep neural network architectures that can be leveraged for multi-task 

learning, since visual image understanding forms the basis and a common prior for many lower level 

analysis tasks. Deep relationship and deep adaptation networks e.g. learn to transfer network weights 

across domains by aligning the joint distributions of multiple domain-specific layers [48]. Cross-stitch 

networks enhance the knowledge transfer by learning layer and abstraction-level specific interchange 

weights between two networks [4]. Furthermore, multi-task learning was realized by uncertainty 

weighting of sub-network losses for scene geometry and semantic segmentation [49] and automatic 

search strategies over various multi-task modules [6]. 

In the medical domain comprehensive multi-task deep learning approaches are still rare. Transfer 

learning for domain adaptation has been extensively studied for pathology detection and segmentation in 

[50]. MLTs have also been applied to perform single- and cross-modality image analysis e.g. to reduce 

gadolinium dose in contrast-enhanced MRI [51] and to synthetize CT from MRI [52,53]. A deep neural 

network is used to learn an automated transform for data reconstruction by manifold approximation for 

data acquired from various modalities in [54]. Joint learning of motion and segmentation was studied for 

cardiac MRI images in [55]. Ultrasound-guided vein thrombosis diagnosis that relies on both landmark 

localization and deformation analysis was addressed using a multi-task deep network in [56]. Another 

area of interest that is not fully exploited for multi-task learning mechanisms are attention gated networks 

that have been successfully applied to medical image analysis (segmentation and localization) in [5]. 

8 Own previous work 

HZG: The division Metallic Biomaterials of HZG covers the developmental chain from alloy design, 

production and processing via in vitro degradation studies towards cell culture experiments and animal 

trials. The correlation between the material properties and the environmental influence on degradation 

on one hand, and the tissue specific stimulation of cellular responses on the other hand, are in the focus 

of research activities. HZG contributes a long-standing experience in tomographic imaging and 
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multimodal investigations of biodegradable implants. Collaborative projects using synchrotron µCT and 

nanoCT are being undertaken to investigate the corrosion of Mg implants in situ, in vivo and on explants 

of implanted screws. The performed investigations include in vitro degradation tests, in situ 

biomechanical tests on implants using SRµCT, 2D SAXS and 3D SAXS/WAXS tensor tomography to 

probe the mineralization of bone, energy dispersive X-ray spectroscopy (EDX) to probe the chemical 

composition, X-ray diffraction (XRD) probing the phase, residual stress and texture of materials, and 

3DXRD (grain mapping) to probe position, orientation and internal strains of grains within a gauge 

volume. 

(1) Moosmann, J., Ershov, A., Altapova, V., Baumbach, T., Prasad, M. S., LaBonne, C., Xiao X., 

Kashef, J. & Hofmann R. (2013) X-ray phase-contrast in vivo microtomography probes new 

aspects of Xenopus gastrulation. Nature 497, 374–377. 

(2) Moosmann, J., Ershov, A., Weinhardt, V., Baumbach, T., Prasad, M. S., LaBonne, C., Xiao X., 

Kashef, J. & Hofmann R. (2014). Time-lapse X-ray phase-contrast microtomography for in vivo 

imaging and analysis of morphogenesis. Nature Protocols 9(2), 294-304. 

(3) Galli, S., Hammel, J., Herzen, J., Damm, T., Jimbo, R., Beckmann, F. Willumeit-Römer & R. 

(2016). Evaluation of the degradation behavior of resorbable metal implants for in vivo 

osteosynthesis by synchrotron radiation based x-ray tomography and histology. Proc. SPIE - In 

Developments in X-Ray Tomography X, 9967:13. 

(4) Zeller-Plumhoff, B., Helmholz H., Feyerabend, F., Dose, T., Wilde, F., Hipp, A., Beckmann, F., 

Willumeit-Römer, R. & Hammel, J. U., (2017) Quantitative characterization of degradation 

processes in situ by means of a bioreactor coupled flow chamber under physiological conditions 

using time-lapse SRμCT, Materials and Corrosion 69:298-306. 

(5) Moosmann, J, Zeller-Plumhoff, B., Wieland, D.C.F, Galli, S., Krüger, D., Dose, T., Burmester. H, 

Wilde. F., Bech. M, Peruzzi. N., Wiese, B., Hipp, A., Beckmann, F., Hammel, J.U. & Willumeit-

Römer, R. (2017) Biodegradable magnesium-based implants in bone studied by synchrotron 

radiation microtomography. Proc. SPIE - Developments in X-Ray Tomography XI, 10391:23. 

UzL-IMI: The research group of Prof. Mattias Heinrich at the Institute of Medical Informatics (IMI), 

currently comprises six PhD students that actively advance the field of deep machine learning in medical 

imaging with specific focus on image segmentation and registration. Most importantly, the new state-of-

the-art multimodal registration metric MIND (modality independent neighborhood descriptor) was 

proposed in 2012 and a novel deformable convolutional architecture for scale- and rotation-invariant 

segmentation won the best paper award for Medical Imaging with Deep Learning in 2018, in addition 

many methodological advances in deep learning have been developed in collaboration with Imperial 

College London (Dr. Oktay). 

(1) Heinrich, M. P., Jenkinson, M., Bhushan, M., Matin, T., Gleeson, F. V., Brady, M. & Schnabel, J. 

A. (2012). MIND: Modality independent neighbourhood descriptor for multi-modal deformable 

registration. Medical image analysis 16(7), 1423-1435. 

(2) Heinrich, M.P., Oktay, O. & Bouteldja, N. (2019). OBELISK-Net: Fewer Layers to Solve 3D Multi-

Organ Segmentation with Sparse Deformable Convolutions. Medical image analysis 54(1)-9. 

(3) Blendowski, M. & Heinrich, M. P. (2018). Combining MRF-based deformable registration and 

deep binary 3D-CNN descriptors for large lung motion estimation in COPD patients. International 

journal of computer assisted radiology and surgery, 1-10. 

(4) Lucas, C., Kemmling, A., Bouteldja, N., Aulmann, L. F., Mamlouk, A. M. & Heinrich, M. P. (2018). 

Learning to predict ischemic stroke growth on acute CT perfusion data by interpolating low-

dimensional shape representations. Frontiers in neurology 9. 

(5) Oktay, O., Ferrante, E., Kamnitsas, K., Heinrich, M. & Kainz, B. (2018). Anatomically constrained 

neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE 

transactions on medical imaging 37(2), 384-395. 

UzL-IMT: For more than a decade, the Institute of Medical Engineering (IMT) has been engaged in the 

reconstruction of images. In particular, in the field of imaging with the use of computed tomography, 
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there is a great level of expertise available. The most important work in recent years has been achieved 

in the fields of iterative reconstruction, metal artifact reduction, and noise suppression: 

(1) Stille, M., Kleine, M., Haegele, J., Barkhausen, J. & Buzug, T. M. (2015). Augmented Likelihood 

Image Reconstruction. IEEE Transactions on Medical Imaging 35(1), 158–173. 

(2) Levakhina, Y. M., Müller, J., Duschka, R. L., Vogt, F., Barkhausen, J. & Buzug, T. M. (2013). 

Weighted simultaneous algebraic reconstruction technique for tomosynthesis imaging of objects 

with high-attenuation features. Medical Physics 40(3), 031106. 

(3) Kratz, B., Weyers, I. & Buzug, T. M. (2012). A fully 3D approach for metal artifact reduction in 

computed tomography. Medical Physics 39(11), 7042–7054. 

(4) Weidinger, T., Buzug, T. M., Flohr, T., Kappler, S. & Stierstorfer, K. (2016). Polychromatic 

Iterative Statistical Material Image Reconstruction for Photon-Counting Computed Tomography. 

International Journal of Biomedical Imaging, 2016. Article ID 5871604, 15 pages. 

(5) Heinrich, M. P., Stille, M., & Buzug T. M. (2018). Residual U-Net Convolutional Neural Network 

Architecture for Low-Dose CT Denoising. Current Directions in Biomedical Engineering 4(1), 

297–300. 

Furthermore, the project will make use of the following patent: Stille, M. & Buzug, T. M., “Method and 

apparatus for reducing artefacts in computed tomography images,” US20170150937A1, DE 10 2014 007 

095.6, WO 2015 173 251 A1. 

DESY: In the context of the Helmholtz Analytics Framework (HAF) project DESY IT has increased its 

activities in the development and implementation of deep learning algorithms. We have implemented, 

and trained a U-Net for the segmentation of 2D slices of SRµCT data. So far the availability of 3D 

information has only been used to the extent that training and predictions were run along the three axis 

of the volume and subsequently the three different predictions have been combined into one, 

considerably improving the accuracy of the segmentation. 

Preliminary evaluations of predictions on test data show that the predicted segmentation is significantly 

improved i.e. more precise than the semi manual segmentation provided by domain experts, despite that 

the training data had numerous errors in the ground truth. Application of the trained model to the training 

data can provide a more accurate ground truth, which can be used in an iterative manner for retraining of 

the network, further improving the prediction quality. 

Analysis of the probabilities with which each pixel was assigned to a label, their distribution, skewness 

and kurtosis suggest that these may be good indicators to assess the quality of the segmentation. The 

evaluation of these probabilities not only point to images where automatic prediction of the segmentation 

failed, but their pixelwise visualization even indicates areas within each image where the model fails. 

Recent Publications: 

(1) Kaira, C. S., Yang, X., De Andrade, V., De Carlo, F., Scullin, W., Gursoy, D. & Chawla, N. (2018) 

Automated correlative segmentation of large Transmission X-ray Microscopy (TXM) tomograms 

using deep learning, Materials Characterization 142, 203-210. 

(2) Yang, X., De Andrade, V., Scullin, W., Dyer, E. L., Kasthuri, N., De Carlo, F. & Gursoy, D (2018) 

Low-dose x-ray tomography through a deep convolutional neural network, Scientific reports 8 (1), 

2575. 

(3) Yang, X., De Carlo, F., Phatak, C. & Gursoy, D. (2017) A convolutional neural network approach 

to calibrate rotation axis of x-ray computed tomography, Journal of Synchrotron Radiation 24, 

469-475. 

9 Project partners and their competence 

In order to achieve the scientific aims of the project requires expert knowledge in deep learning, 

algorithm development, high performance computing, data acquisition and processing as well as input 

from domain experts. Each partner contributes with complementary competence within the consortium. 
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Mattias Heinrich (UzL-IMI) received his PhD from the University of Oxford in 2013 and has been 

actively involved for several years in the automatic interpretation and analysis of medical image data, 

image-guided medical diagnosis and treatment (e.g. CT stroke diagnosis and image-guided 

radiotherapy) and methods for deep machine learning, which provide a foundation for many tasks in this 

planned project. His research group consists of currently six PhD students, which are funded by two 

ongoing DFG projects HE 7364-1/2 and DFG HE 7364-2/1, one industrial PhD project and stipends, and 

actively develop new state-of-the-art methods for deep learning medical image analysis: segmentation, 

motion tracking [45,57] and interpretable visualization of prior shape models [10,58] and fusion of 

multimodal medical image registration. He has published in numerous high-ranking journals (19x with IF 

3.5 or higher) and 14 papers at the premier international conference MICCAI (Medical Image Computing 

and Computer Assisted Interventions) with acceptance rates of only 30%. He has won a best paper 

award for deep learning in image registration [59] (senior author, BVM 2018, Erlangen), the prestigious 

MICCAI Young Scientist Award for medical multimodal image registration (first author, MICCAI 2011, 

Toronto) [60] with deep learning based extensions [11] and very recently the best paper award at MIDL 

2018 (Medical Imaging with Deep Learning) for scale-adaptive deformable filter kernels [61] as first 

author with a prize of $9000. Mattias Heinrich’s research also investigates new methods (partly in 

cooperation with Imperial College London) to improve neural networks for use with a limited number of 

annotated training data to increase the plausibility of the results by prior knowledge [15], visualize 

attention for interpretable results [5], by using limited computing capacities for large-scale deep learning 

inference [62] and for deep-learning based ultrasound-guided thrombosis diagnostics [56]. Mattias 

Heinrich has been selected to be part of the program committees for MICCAI in 2015 and 2018 and for 

MIDL in 2019.  

Prof. Thorsten M. Buzug (UzL-IMT) received his PhD in 1993 in Applied Physics from the Christian-

Albrechts-University of Kiel, Germany, where he worked in the field of signal processing applied to 

chaotic systems. He was the leader of the Philips Research Cluster Medical Image Processing and 

responsible for several projects in that field. In October 1998 he has been appointed as professor of 

Physics and Medical Engineering at the RheinAhrCampus Remagen. 2000-2004 he was head of the 

Academic Development Committee of the RheinAhrCampus Remagen. 2004-2006 he was head of the 

Joint Council of Campus Departments. In December 2006 he became Director of the Institute of Medical 

Engineering at UzL. He has published numerous journal articles, conference papers and books. He is 

member of the National Academy of Science and Engineering (acatech), German Physical Society 

(DPG), German Society of Biomedical Engineering (DGBMT), German Society of Nondestructive Testing 

(DGfZP), the IEEE and SPIE. 

Helmholtz-Zentrum Geesthacht (HZG): The division Metallic Biomaterials led by Prof. Willumeit-Römer 

is focusing on the investigation of Mg-based alloys as temporary bone implant material. In particular, 

tailoring the degradation behavior of the alloy by adjusting the alloy composition, the processing route 

and the surface characteristics is a central research topic. The institute covers the full value chain from 

material design, production, processing, in vitro corrosion and cell culture up to in vivo studies in mice 

and rats (HZG outstations at the synchrotron PETRA III in Hamburg and the Molecular Imaging Center 

MOIN in Kiel). Thus, HZG provides extensive data sets including annotated data and domain expert 

knowledge. Due to the very close collaboration and joint projects with the division Materials Physics, 

which is operating instruments at large scale facilities for structural investigation, HZG has expertise in 

X-ray diffraction and imaging using synchrotron and laboratory sources including data acquisition and 

processing, segmentation, and registration. 

Deutsches Elektronen Synchrotron DESY: DESY IT operates the high performance computing (HPC) 

resource for PETRA III, FLASH and the European XFEL with more than 22,000 CPU cores and 120 

state of the art GPGPUs, presumably one of the largest photon science dedicated compute platforms in 

Europe (https://confluence.desy.de/display/IS/Maxwell). Access to HPC resources (with high-end 

visualization capabilities) will be provided to project partners as an in-kind contribution. Additional 

resources and access to models and data will also be provided in-kind through European Open Science 

Cloud (EOSC) portals and services. DESY IT has been contributing to a large of number of international 
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and national project in fields related to data lifecycle management, data preservation in particle physics, 

photon and neutron sciences or scientific computing. More recent activities involve the EOSC and 

Helmholtz projects like Amalea and the Helmholtz Analytics Framework (HAF) exploiting machine and 

deep learning in various fields from predictive maintenance to image processing. A recent workshop 

(https://indico.desy.de/indico/event/21640/) and machine learning seminar series 

(https://indico.desy.de/indico/category/641/) provide an overview of current activities and expertise.  

10 Work plan and work packages 

Overview of work packages (WP) with assignment of tasks (T) and deliverables (D): 

WP1 Data pre-processing (lead: HZG) 

Data from different modalities collected on different devices requires a common standard for data 

storage and access including metadata extraction (e.g. type of modality, resolution, etc.). All data sets 

will be integrated into a database which is currently developed by HZG. 

T1.1: Harmonization of data sets with respect to data format, pixel/voxel size, normalization, etc. 

T1.2: Database integration of data sets. 

D1.1: Harmonized data sets. 

D1.2: Data sets integrated into database. 

WP2 Image enhancement (lead: UzL) 

WP2 explores deep learning (DL) approaches for image enhancement, i.e. for the reduction of metal 

artifacts and for contrast enhancement of human and animal data exhibiting a low signal of 

biodegradable implants. 

T2.1: CNN-based approaches for post-processing artifact reduction. 

T2.2: Direct DL-based CT reconstruction. 

T2.3: Iterative reconstruction algorithm for artifact reduction in combination with DL-based image and 

raw data processing. 

T2.4: Quality assessment of reconstructed CT scans with adversarial networks. 

T2.5: Integration of a non-local Prior Image-based regularization and implant-dependent weighting. 

T2.6: Transfer learning between modalities and resolutions. 

D2.1: Tool for image enhancement, based on CNN post-processing. 

D2.2: Reconstruction algorithm for artifact reduction including noise and metal artifacts in ex and in vivo 

animal data from labCT. 

D2.2: Enhanced spatial resolutions of in vivo labCT data. 

WP3 Segmentation (lead: DESY) 

WP3 explores DL-based approaches for segmentation of challenging data. This involves the 

segmentation of individual datasets as well as the development of multimodal segmentation networks 

using multiple data sources in parallel. 

T3.1: Study of the robustness of CNNs towards weakly annotated ground truth data. We will use 

standard test-sets, e.g. MNIST, and introduce varying amounts of random and systematic false 

annotations to evaluate the performance of the standard examples in dependence on the fraction of false 

annotations. 

T3.2: Development of semi-automatic tools based on CNNs with U-net topology to shorten the time 

required and to increase the accuracy of the manual segmentation of datasets. 

T3.3: Iterative DL-based segmentation using CNN with U-net topology for automatic segmentation and 

analysis of high-resolution SRµCT data, using weakly annotated ground truth data. Different approaches 

to exploit the availability of 3D spatial information will be evaluated. 

T3.4: DL-based segmentation using CNN with U-net topology for automatic segmentation and analysis 

of pre-clinical MRI. 

T3.5: Quality criterion derived from probabilities of the trained network. The quality of manual 

annotations (segmentations) varies strongly in precision, spatial resolution and completeness because of 

the complexity, heterogeneity and huge extent of the data. A tool, based on the computed probabilities of 

https://indico.desy.de/indico/event/21640/
https://indico.desy.de/indico/category/641/
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the network and their distribution, will be developed to automatically identify potential critical results in 

terms of entire 3D volumes, whole 2D images, as well as local patches within the images, which require 

a manual review. 

D3.1: Segmentation tool. 

D3.2: Segmentation of animal data from ex vivo SRµCT, SAXS and histology. 

D3.3: Segmentation of animal data from in vivo MRI and in vivo CT. 

D3.4: Segmentation of animal data from ex vivo SRµCT and in / ex vivo MRI / CT. 

D3.5: Segmentation of longitudinal data from clinical MRI. 

WP4 Registration (lead: UzL) 

WP4 explores DL-based approaches for registration of multimodal and/or longitudinal data sets.  

T4.1: Development of DL-based registration methods, which include semantic guidance from 

segmentation networks and landmark localization tasks. 

T4.2: Learn modality-invariant features for SRµCT, SAXS, histology, in vivo MRI and CT. 

T4.3: Employ shape encoder methods to define a canonical anatomical coordinate frame for large 

displacement alignment of medical scans including 2D to 3D. 

D4.1: Registration tool for ex vivo and in vivo animal data from SRµCT, SAXS and histology. 

D4.2: Performance evaluation for in and ex vivo animal data from MRI, CT and histology. 

D4.3: Registration of longitudinal and multimodal clinical MRI as well as CT data to transfer network 

weights for multi-task strategy. 

WP5 Multi-task learning (lead: UzL)  

WP5 explores synergies by identification of generic structures (filters, topology, etc.) in the neural 

networks used in WP2-4 and aims to develop tools for simultaneous image enhancement (reduction of 

artifacts/noise, contrast enhancement, etc.), segmentation and registration using multi-task learning 

approaches.  

T5.1: Identification of generic structures in the neural network from WP2-4. 

T5.2: Enhanced segmentation and registration of ex vivo animal data via iterative multimodal 

segmentation. 

T5.2: Development of a software tool for multi-task analysis for simultaneous image enhancement, 

segmentation and registration. 

T5.3: DL-based multimodal segmentation with CNNs using registered (WP4) data derived from different 

experimental methods. We will investigate as well the use of the registered raw-data, i.e. the images, as 

well as using the individual segmentations derived from WP3 to obtain better segmentations. 

D5.1: Software tool for multi-task analysis (enhancement, segmentation, registration). 

D5.2: Multi-task analysis of ex vivo animal data from SRµCT, SAXS and histology. 

D5.3: Multi-task analysis in vivo animal data from MRI and labCT. 

D5.4: Multi-task analysis of animal data from ex vivo SRµCT and in / ex vivo MRI / labCT. 

D5.5: Multi-task analysis of longitudinal data from clinical MRI. 

WP6 Unified framework (lead: HZG) 

The generic structures identified in WP5 will be analyzed and generalized in order to translate the 

methods and tools developed in WP2-5 to use cases of other modalities and domains. 

T6.1: Development of a unified framework for multi-task analysis across modalities and domains. 

T6.2: Deployment of the unified framework to the Maxwell cluster at DESY. 

T6.3: Performance evaluation of the unified framework for domains and modalities other than in WP2-5. 

D6.1: Unified framework. 

D6.2: GitHub code repository. 

D6.3: Performance evaluation. 

WP7 Management (lead: HZG) 

For the management of the project all partners provide full service of the financial and legal department. 

In addition the following issues will be accounted for: 

T7.1: Organization of regular meetings and personal exchange between partners to ensure the most 
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efficient way of communication and work progress. 

T7.2: Organization of three workshops during the project phase. 

T7.3: Reporting to BMBF. 

D7.1: Seven project meetings (kickoff meeting, six annual project meetings). 

D7.2: In combination with the project meetings three workshops which will be organized. 

D7.3: Scientific and financial reports. 

 IMT IMI DESY HZG Sum (PM) 

 WP1 Data pre-processing 3 2 2 9 16 

 WP2 Image enhancement 17 2 1 2 22 

 WP3 Segmentation 3 2 10 2 17 

 WP4 Registration 1 10 1 2 14 

 WP5 Multi-task learning 4 12 2 8 26 

 WP6 Unified framework 2 2 8 12 24 

 WP7 Management 0 0 0 1 1 

Sum (PM) 30 30 24 36 120 

Table 1: Distribution of person month (PM) workload within work packages (WP). 

11 Intended exploitation of the project results 

All tools and methods developed within this project will be integrated in an open source software 

framework which will be publically available as a GitHub code repository. The framework will further be 

implemented on the Maxwell cluster at DESY and will thus be available to all users of PETRA III and 

XFEL. In general, the demand for such tools is very high at PETRA III and, in particular, for the user 

groups at the imaging end stations of P05 and P07 which have to deal with at least one, often several, of 

the tasks of segmentation, registration and image enhancement. In particular, the segmentation of huge 

amounts of 3D volumetric data (in the order of terabytes) is a very time-consuming process often 

delaying data analysis for weeks and months. 

Within DESY there is a number of distinct experiments which will benefit from the developed and 

implemented methods. In particular in macromolecular structural biology the demand for reliable and 

accurate multimodal methods for 3D reconstruction and segmentation is huge. Data on macromolecular 

structures is measured on the campus with different methods ranging from synchrotron based X-ray 

crystallography to cryogenic electron microscopy, to SAXS and XFEL based methods. Joining the 

potential of all methods in an automatic manner to obtain a model of the molecules under investigation is 

so far not used routinely.  

Methods developed for segmentation and image enhancement will be used by Syntellix in order to 

evaluate the performance of their magnesium-based alloy, MAGNEZIX®, in medical applications. 
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